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ABSTRACT 
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matrix, as contrasted with the simpler, self-dimensional forecasts obtained 
in prior literature.  However, there was an error made in the sufficient- 
statistics term of the covariance predictor which is corrected in this work. 
In addition, this paper explains in detail the properties of the enriched 
multinormal prior and why revised statistics are needed, and interprets the 
important relationship between the linear transformation matrix and the ma- 
trix of credibility time constants.  An enumeration of the additional number 
of hyperparameters needed for the enriched prior shows its value in modelling 
multinormal problems; it is shown that the estimation of these hyperpar- 
ameters can be carried out in a natural way, in the space of the observable 
variables. 
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ENRICHED MULTINORMAL PRIORS REVISITED 

by 

William S. Jewell 

1.  INTRODUCTION 

The multivariate Normal distribution continues to occupy a central role 

in Bayesian analysis, not only because it is the assumed or the limiting 

distribution in many practical models, but also because it provides direct 

access to the study of covariance between random variables.  If both the 

mean and the covariance are random parameters, then the usual informative 

prior that is assumed is the Normal-Wishart, due to Ando and Kaufman (1965). 

However, it is well-known that this prior is too "thin", that is, only has 

a small number of hyperparameters (see, e.g., Press (1981)); this in turn 

limits the modelling of prior experience. As we shall see, a similar 

problem occurs in finding a natural conjugate prior for any distribution 

from the multivariate exponential family. 

In (1974b), the author suggested a method for "enriching" the multivariate 

prior through linear transformations on independent marginals, thus intro- 

ducing more hyperparameters.  This approach successfully enriched the "cred- 

ibility formula" for the vector mean of the Bayesian predictive distribution, 

that was also too thin with the Normal-Wishart prior.  However, because the 

original article was in a European actuarial journal, it received little 

attention, and it is hoped that this paper will encourage further work on 

this difficult problem. We also take this opportunity to correct several 

typographic errors and two erroneous formulae in the original work. 

We begin with a brief review of the credibility theory that motivated 

this research and the problem of finding natural conjugate priors for multi- 

variate distributions. 



2.  CREDIBILITY THEORY 

Credibility theory is the name given by American actuaries to an ap- 

proximate formula developed in the 1920's to forecast the mean of future 

observations (of insurance claims).  In modern terminology, we would say 

that the problem is one of finding the best linear-least-squares approxima- 

tion to the mean of the Bayesian predictive density.  By now, the literature 

of credibility theory has grown rapidly; convenient articles showing the 

variety of models are: Norberg (1979), Kahn (ed.) (1975), and De Vylder 

(1982).  Of course, this theory has many results in common with traditional 

statistics and with linear filter theory, see, e.g., Diaconis and Ylvisaker 

(1979) and Feinberg (1980). 

To illustrate the basic model development that motivated the work on 

enriched priors, consider the usual Bayesian set-up in which a p-dimensional 

* p 
vector of random variables , x , defined over some fixed  space X in R 

depends upon an abstract (vector or scalar) parameter 6 in a space 0 

through a likelihood density    p(x | 9) ; 6 is considered also to be random, 

with a known prior-parameter density    p(6) , developed through previous ex- 

perience or personal belief.  In actuarial science, as in economics, there 

are few philosophical barriers to such assumptions.  If n independent 

samples of x are observed with fixed 6 , then the posterior-to-data den- 

sity of 6  is given by Bayes' law: 

n 
p(e | V )  <r i P(x | e)p(e) (i) 

x  t-i  c 

Notational remarks and distributional results are given in the Appendix. 
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(we omit the normalization), where V      is the data set  (xt I t • 1, ..., n} 

In insurance application, the focus of interest is not on 6  (which repre- 

sents some abstract property of the insured risk), but rather on the forecast 

of some future outcome  of x  , given that 6 remains constant (i.e., on the 

distribution of future claims from the same insured).  Thus, attention shifts 

from (1) to the predictive density: 

P(x | Px) = JP(x | 6)p(e I Px) de . (2) 

Ideally, the actuary would prefer to express his prior experience not 

through p(8) , but through the prior-outcome  (marginal) density: 

p(x) - fp(x | 6)p(6)de . (3) 

However, it will be seen that is not possible to completely avoid considera- 

tion of the structure of p(8) . 

The mean of (2) is the "fair future premium" that is of central interest 

in insurance, and in the 1920's, American actuaries developed a one-dimen- 

sional approximation formula through practical arguments, which we may 

write: 

E(x | Vx)  * (1 - z00)m + z00x 

(A) 

00  n0Q + n 

Here,  m » E(x)  is the mean prior outcome   ("the manual fair premium"), and 

1 t x • — l  x  is the usual sample mean  ("the experience fair premium").  z_n 

is the "credibility" factor which mixes the predictor from prior experience• 

m , with the predictor from experimental evidence,  x ;  zno -*• 1 as n * °° 



n_n , the time constant of learning from experience, was set empirically. 

This credibility method of "experience rating" has worked well in the 

insurance industry since that time. 

With the renewal of interest in Bayesian formulae in the '50s, Bailey 

and Mayerson showed that (4) was, in fact, exact  for certain simple conjugate 

prior p(x | 6)  and p(9) .  Bühlmann (1967) then proved the important 

result that, for arbitrary  one-dimensional priors and likelihoods, (4) was 

the best linear least-squares approximation, provided that the time con- 

stant nnn is chosen to be: 

nQ0 = El/{x | 6}/l/E{x | 0} . (5) 

These moments are recognizable as the components of the total variance 

l/{xl  of (3), and show to what extent the structure of inter-risk and intra- 

risk variability needs to be specified, a priori. 

In (1974a), the author showed that (4) was also exact for the linear 

exponential family,  whose likelihood can be written: 

(  1 ~6x 
p(x | 6) = —f^fj— .  (x e X) (6) 

provided that the natural conjugate prior density, 

~n00 -9x0 

p(6) = [c(6^d(e)
e  >  (6 e 0) (7) 

is used over the complete parameter space 0 for which d(6)  is finite, 

and provided that  p(6) -•• 0 at both ends of the range (Jewell, 1975a).  It 

turns out that n_0 is just the time constant n_0 of Bühlmann. 



With these useful results relating the one-dimensional credibility 

approximation with corresponding Bayesian formulae for which (4) is exact, 

it was natural to consider extensions to higher dimensions.  In an unpub- 

lished 1973 report, the author showed that the p-dimensional analogue to 

the Bühlmann result is: 

E(x I V  ) a (I - Z)m + Zx , (8) 

where now the linear approximation minimizes the sum  of squared-errors in 

each dimension,  x is the vector sample mean: 

ilst> ^ 

and I is the p-dimensional unit matrix. To develop the remaining first 

and second moments, we define the conditional vector mean and conditional 

matrix covariance using p(x | 6) : 

m(6) - E{x | 6}  ;  C(6) = £{x | 6} , (10) 

and obtain the three unconditional first and second moments: 

m - Em(6)  ;  D - l/{m(6)} ; 

E - E{C(6)}  ; C = D + E - V{x)   . 

(11) 

E and D are sometimes called the intra-risk and inter-risk components of 

variance, respectively.  As in the one-dimensional case, the analyst must 

estimate not only m and £ in X , but must know enough about the param- 

eterization to estimate the two components of covariance. 



(8) is seen to again be a mixture of the mean prior outcome, m , and 

the MLE experience estimator, x .  However, the weights of the mixture now 

come from a p * p matrix credibility factor,    Z , so that the experience in 

all  dimensions is (usually) useful in forecasting any particular x. .  In 

this case, we say we have full-dimensional credibility;  such forecasts are 

intuitively better than just forecasting x.  using (x). . 

If we define the matrix of time constants: 

N = ED-1 , (12) 

it turns out that the matrix credibility factor is analogous to (A): 

Z = n(H + nl)"1  ;  (I - Z) - ± (ZN) = \  (NZj . 

Z , (1 - Z)   ,  N , and their powers and inverses all commute, even though N 

is not necessarily symmetric.  Furthermore, if we find the eigenvalues ^
V
J) 

of N_ through  |N - vl| = 0 , then the eigenvalues of Z    are {n/(n + v )} . 

One can use this to show that, in the non-degenerate case,  Z •* I as n * °° , 

so that the classical estimator x is the ultimate credibility forecast. 

However, without further restrictions, ic is possible for the components of 

£ , which are rational functions of n , to show non-monotone behavior. 

With this "shrinkage" result established, the author next sought to find 

multi-dimensional priors and likelihoods for which (8) is exact.  But here 

certain difficulties arose that will be explained after we consider multi- 

dimensional exponential families. 



3.  NATURAL CONJUGATE PRIORS IN THE MULTIVARIATE EXPONENTIAL FAMILY 

The essential reasons why (6) (7) provide the exact Bayesian result (A) 

is that x is the sufficient statistic for 6 , because (6) is in the ex- 

ponential family, and (7) is the natural conjugate prior to (6), which is 

closed under sampling,  that is, the posterior density    p(6 | V  )  is in the 

same family as (7), with the updating n„0 • nQ0 + n , and x„ "- xfl + nx . 

We now attempt to generalize this approach. 

If x is a p-dimensional random variable which depends upon a q-dimen- 

sional vector of parameters 9 , the general multivariate exponential likeli- 

hood  can be written: 

, . -e'f(x) a(x) e * ~ ~ 
P(£ I S> -   Wc(£>    '   (£ E X) (13) 

where a is the kernel,    £ is the vector-valued function of sufficient sta- 

tistics,  and c is the normalization factor,  chosen so that '|fp(x I 6,)d£ = ~ 

The parameter space 0 consists of all points in R  for which c is finite; 

0 is known to be convex but not much else is known in general. 

Natural conjugate priors for random 6 have been constructed for several 

specific multivariate distributions in the exponential family (see, e.g., 

Johnson and Kotz (1972)); however, there seems to be little discussion in the 

literature about how to proceed in general. Based upon one-dimensional pro- 

cedures, the usual approach is to regard (13) as a function of £  ,  and to 

replace functions of x and any constants by hyperparameters;   this gives a 

prior density: 

n00 "&~00 

P<e> • P<& I n00 , Xoo> ' C(^(L,fL)  ' (£ e Ö) d(n
00'^00} 

(14) 



with  q + 1 hyperparameters  (n.-.X•)  that may have to be restricted so 

that the normalization,  d , exists.  Usually (14) leads to a prior of 

recognizable and "interesting" form, even though no advance assurances can 

be given in the general case.  However, if p(6)  is found to be an "honest" 

density, then we see immediately that it is closed undßr sampling; i.e., 

given n independent samples (x    ; t = 1, ..., n)  from (13) (with fixed 

#6) , we find p(,6 | V  )  to be of form (14), with updating; 

n 
noo * noo + n ; ^oo * <£oo + l  £<& • (15) 

It is now also clear why f is called the vector of sufficient statistics. 

Most applications of interest concern predictive distributions (Aitchinson 

and Dunsmore (1975)).  A priori, the marginal distribution of x    is: 

r     , d<noo + 1Jioo+£<5>) 
P&> - /PQS I £>P<e)de = a(x) — ,uu     , (16) 

which is also usually of "interesting" form, if (13) and (14) are.  Further- 

more, it follows that the predictive density p(x | V  )  is also closed under 

sampling, and uses the updating (15) in both numerator and denominator of 

(16). 

In Jewell (1974b), it was shown that a certain generalized credibility 

forecast of the mean value of the function £ then follows: 

E{f(x) | Px) - (1 - z00)E{f(x)} + z00 i j^ f(xt) ,       (17) 

with a scalar  credibility factor equal to (4).  This result requires rather 



strong assumptions about the regularity of p(^,)  on the boundary of 0 , 

which, however, usually seem to be satisfied for practical distributions 

If we specialize to the linear exponential family  with ,f (x,) = £ (and 

q • p), we find the exact multi-dimensional mean forecast: 

E(£ | Px) = (1 - Zoo)m + z00x , (18) 

which should be compared with the credibility approximation (8).  This result 

is obtained, for example, if x is multinomial, with a random mean vector 

u and fixed precision matrix W , with a multinormal prior on u : 

(x | u) ~ W (y;W) 

Ji~wP
(5;n00W) 

(19) 

(see Appendix for distributions).  However, because z... is a scalar cred- 

ibility factor, we see that (18) is rather uninteresting compared to (8), 

since the forecast of each x.  is given by a credibility forecast using 

only (x). .  Furthermore, since ]A  • noni- ' eac^ forecast has the same  time 

constant nfif. ! We shall call such forecasts self-dimensional,  in contrast 

to the full-dimensional  form (8).  To rectify this unsatisfactory state of 

affairs, we shall have to consider ways to "enrich" (18), by adding more 

hyperparc.meters to (14) or (19). 
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4. ENRICHED PRIORS FROM LINEARLY DEPENDENT MULTIVARIATE EXPONENTIAL FAMILIES 

In Jewell (1974b), the ( observation was made that the thinness of (14) 

was due to the scalar nature of the factor [c(6)fn°0 . 

There have been various proposals for enriching multivariate priors, 

particularly th e multinormal prior.  Those known to the author are: 

(1) Press (1981) refers first to enrichment as the process of 
examining the behavior of p(x ] _6)  as a function of 6_ , 
which we used to find (14), above.  But he also suggests 
that various lower-dimensional marginals, considered as 
functions of J| , could be multiplied together to get 
p(_£) .  Such a procedure was followed by Kaufman for the 
multinomial priors in unpublished papers in 1965 and 
1967; however, it seems to lead to rather complex re- 
sults with little motivation, and does not solve the 
full-dimensional credibility problem; 

(2) One can, of course, also multiply (14) by an arbitrary 
-n, 

function, say  [g(6_) ]   •  But, since n.. will not 

participate in the updating (15) because g(6,) has no 
relation to c(_8) , it is essentially a nuisance hyper- 
parameter, and no real enrichment has taken place, ex- 
cept perhaps to put the prior in some standard form. 
See also the scale changes in Section 10; 

(3) Another procedure, often recommended when one-dimen- 
sional priors do not match empirical priors, is to use 
a model-mixture prior,  by combining a (small) number 
of natural conjugate priors (14) with different co- 
efficients : 

p<£> -i v(£ I nko'4o) • (20) 

k 

Here the  Ja, >_ 0 ; J a - lr  and the various hyper- 

parameters are determined by matching the empirical 
prior.  The difficulty with this approach is not 
with the updating, which follows (15) for every 
"model" in (20) , but is that the weighting coeffi- 
cients, a, * 8^(5 ) , must also be updated,  usually 
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in a messy algebraic manner.  And, of course, when ap- 
plied to the credibility problem, (20) will merely 
stabilize, for large n , on the "best" n.n for 

self-dimensional forecasts; 

(A)  Another suggestion for enrichment is to regard (14) 
as part of an hierarchical model  (Jewell (1975b)), 
with the hyperparameters  ^nno'^oo^  also considered 

as random variables, with their own hyperprior den- 
sity p(nQ0,^0) .  This approach requires an ex- 

tremely simple normalization d , and probably ex- 
tremely few random hyperparameters in order to 
carry out the necessary marginalization.  Dickey, 
Lindley, Press and James, (1981) do this with 
a model in which there are only 2 random and 1 
fixed hyperparameters. 

Since the thinness of (14) is due to the scalar nature of the factor 

[c(6_)] 00 , it follows that the number of time-constant hyperparameters 

can be increased if c(6)  can be decomposed into several factors that 

depend upon various subsets of ^8 .  One way the decomposition might occur 

was if both the sufficient-statistics vector,  f(x) , and the kernel,  a(x) 

could be decomposed into related components, through a linear transformation; 

it follows then that c(6) would undergo a similar decomposition, and each 

factor could have its own hyperparameter, n.n . We call such likelihoods 

where this decomposition works linearly dependent multivariate exponential 

families.     (LDMEFs). 

To fix ideas, consider first the case where the sample mean is the only 

sufficient statistic, i.e.,  f(x) *  x and q • p .  Let A be an invertible 

p x p matrix, and consider first a vector y of independent  random risks, 

each component having a linear exponential likelihood with parameters 

(4>.,4>_, ..., <p  ) , so that the joint likelihood density is: 
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p   My..)   -<t>'y 
p~ ' ~ = i!i*?*7'~~ '  ~£ V) (21) 

for some appropriate vector space, V  , kernels {b.} , and normalizations 

{d.} .  For each component i , an appropriate natural conjugate prior 

similar to (7) is constructed, so that the (independently distributed)  {$.} 

have a joint prior: 

"ni0 P      [c.(4.)]     1U     -fy 
p<*> • n   urnr ,  •> e •   (£«•) (22) 

~        i=l   diCniO*y10) 

for some appropriate vector space,  $ , and the 2p hyperparameters, 

ZO =   [y10'y20' •••' yp0] and £0 "   tn10'n20' •'•' nP0
] * Already the 

situation is somewhat improved, for it can be seen that the exact form for 

E{y I V  } , although "self-dimensional" as in (18), now has a different 
~  y 

time constant, n.Q , for each dimension. In other words, the matrix 

credibility forecast (8) is exact, but with a diagonal matrix of time 

constants: 

'n10      o 

:\r    |       n20. | 
o    n

Po. 

and corresponding diagonal credibility matrices Z^  - nQj^. + nl) 
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Now, make the (full rank) transformations: 

y = A~ x  ; <p  = A'e ; (24) 

this changes (21) into a likelihood proportional to: 

P(x I ,e) « n bi(^|"
1x)i)e"Ä'* , (25) 

i=l 

and by comparison with (13), with ,f(x) = JC , we see that this is precisely 

the result we will have if  the linear transformation x = Ay factors the 

kernel b(jx)  into p components, each depending upon a single    y 

(i = 1,2, ..., p) . 

If the likelihood permits this factorization, it then follows that the 

enriched LDMEF prior  on ,§ is gotten from (22) as: 

P        -*i0 -2. iSo 
p(6) - n  [c ((A'£) )]  *"•   v   , (26) 

i-1 

with the hyperparameter transformation 

•So *~&o • (27) 

The following result is then obtained: 

Theorem: 

If P(x I £)     is an LDMEF likelihood, as defined in (21) (25), and the 

enriched prior (26) is used with hyperparameters {n.Q > 0} , the full- 

dimensional forecast (8) for E{x | V  } applies, with time constant matrix: 
^8     X 

N -„ANQA"1 -.ED'1 • (28) 
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Proof: 

As mentioned above, the proof requires the assumption that p(8)  is 

well-behaved on the boundary of 0 .  After showing that ,x0 • JJm , the 

result follows after showing that the correct updating with data V      is 

given by: 

n 

£ - & + nl    I    £Q * £Q  + I   45t • (29) 

Further details may be found in Jewell (1974b). • 

To show that this result is not vacuous, we reconsider the problem of 

the multinormal prior with random mean u and fixed precision matrix W , 

whose thin prior was given in (19).  It follows from the above that the 

"thick" prior that gives a full-dimensional credibility forecast is simply: 

V  ~W (m ; WN - N'W) . (30) 

Here E = vf  is fixed, but D • (WN)~ « N~ E .  The initial precision 

matrix associated with the forecast E{x  IP}« E{u I V  } is NW • D  , 

so that, after n observations, the precision improves (homoscedastically) 

to (N + nI)W • D  + nE  . These results are well-known (see, inter alia, 

De Groot (1970), page 175). 

We turn now to the fundamentally more difficult problem of the multi- 

normal with both random mean and random precision. 
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5.  THE ANDO-KAUFMAN MULTINORMAL PRIOR 

Consider the p-dimensional multinormal with random mean vector V   , and 

random precision matrix Q , for which the likelihood density is: 

p(x | y,a) - (2^)"p/2|fi|isexp [- ^ (x - u)'£(x - u)| .       (31) 

This is in the family (13), with f.(x) = x.  and 6. - -(ßy).  for 

i = 1,2, ..., p , and f^x) - -^ x x  and 9i = w.k for  (j,k) = 1,2, ..., p , 

2 
and i = k + pj =p + l,p + 2, ..., (p + p ) = q .  Thus, we have many more 

random parameters than observables.  The kernel a(x) 5 1 , and the normalizing 

factor (in traditional notation) is: 

c(u,fl) = (2*)p/2|«|~ls exp \\  v'flu j • (32) 

2 
To form the natural conjugate prior, we first assume q+l=p +p+l 

hyperparameters {nnn;xn;Qn} , where Q_ is a p * p matrix, and then follow 
UU *"wU *>*U *>*u 

(13), with (32) expressed in terms of 6 .  Upon transforming back to tradi- 

tional notation (the Jacobian of the transformation is  |ßj)» we obtain the 

thin prior: 

pfc;£) « |0| n°° '  exp j- J u« (n^p + y'toj, - f tr (Q^) ] .   (33) 

By factorization into p(u | n) • p(ß) , this can be seen to be a Ncrmal- 

Wishart density.    For the conditional mean: 

p(w | 0) - lÄl* exp |-f fe- ^('(n^fe - n^)j ,      (3A) 

that is, a multinormal, with  (JJ | £) ~ W (nOo2o'nOo2J ' 
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This leaves, after some algebra, the precision matrix density, 

P(.S> • l£l        exp [- j  tr (OT0)| , (35) 

with 

^0 "-So" n005050 ' (36) 

defined only in those points of R       for which Ü    is positive definite. 

(35) is the Wishart density,    Q ~ <"(n  + p + 2 ; V~)   ,   for which moments are 

given in the Appendix.  We now note that V^.     (and hence Qn) must be sym- 

metric,  not for the trace, but for the moment formulae (39) below.  Thus, there 

1  2 
are really only — (p + 3p + 2)  free hyperparameters. 

The marginal distribution of y requires some additional algebra (see 

De Groot (1970) or Press (1981)), which finally gives: 

P(ü> 
1 + noot.- ^c&^Gi " nöo2o) 

-4(n00+p+3) 

(37) 

which is seen to be a multivariate Student-t density,  y ~ S In  + 3 ; 
^*   p \ \j\j 

n0CÄ) ' n00^n00 + 3^~0 ) '  Again» moments are found in the Appendix. 

Similarly, the marginal outcome density is also found to be Student-t, 

with x ~ Sp(n00 + 3 ; n"^ ; nQQ{nQ0  + 3)(nQ0 + l)"^
1) •  The updating 

is, from (31): 

noo * noo + n ; x~ * x- + I x^  ; Q- «- Q. + ]    x x' .   (38) 
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The relationship with the moments defined in (11) follows from the moments 

of (35) (37): 

Ä " A  5 I - (n00 + l)
_1iJ0  ;  D = n'J(n00 + l)~\     ;  C = n'^ , (39) 

so that, as expected, the forecast mean £(x | V  )  is of the self-dimen- 

sional form (18).  A new credibility formula of interest is the forecast of 

the covariance matrix of (37), as updated: 

j/{* | Px) - (i - ZQO)C • ZQO 

1 n 1 
i^ fee-*><*-*>•] 

(40) 

+ zoo(1 ' zoo)(£~ 5)(^" £)f 

Again we see the familiar convex combination of the prior outcome covariance 

and the classical MLE covariance estimator, supplemented here by an inter- 

mediate term which uses the variation of the sample means about their true 

values  (znf.(l - ZQQ)  attains its maximum value at n = nof)).  Results 

analogous to (40) are given by both De Groot (1970) and Press (1981), although 

not in as appealing a form. 

The prior (33) was discovered by Ando and Kaufman (1965) , and its "thin- 

ness" is well-known.  The usual criticism is that one cannot set both the 

means and covariances of u and 8 independently, or to put it differently, 

once E{y}  and E{ti]     or E{U    } are given, there is only one free parameter. 

From our point of view, the limitation is that the two components of observa- 

tional covariance cannot be specified independently, since E_ * nnrJi > and 

this makes the credibility forecasts of mean and covariance (18) (40) both 

self-dimensional. 
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Actually, the prior given by Ando and Kaufman is slightly more general 

than (33), with  |£|'5<'n00+2)  replaced by  |£|'5(a~P) , where a is the 

"degrees of freedom", not necessarily equal to p + nnr) + 2 .  This leads 

to invariant nuisance hyperparameter enrichment, of the type already dis- 

cussed, that merely scales the observational covariances, independent of 

the means.  As mentioned above, in some unpublished work in 1965 and 1967, 

Kaufman additionally enriched this prior by multiplying the Wishart density 

by arbitrary powers of the products of determinants of principal minors of 

fi , thus introducing p - 1 additional hyperparameters.  But, the resulting 

formulae are quite complicated, and do not appear to give credibility results, 

« 
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6.  LINEARLY-DEPENDENT MULTINORMAL PRIOR 

We now use the methods of Section 4 to provide a LDMEF prior to (31), 

keeping in mind that we want to obtain a full-dimensional forecast (8) and, 

hopefully, to generalize (40).  If we apply the transformations: 

x = Ay  ;  u = AX_ ; (41) 

we see that we obtain transformed variables (y;A) of full rank, since A 

is assumed to be p x p and invertible. But this then leads in (31) to a 

transformation of the precision matrix: 

ft - A'ßA  ; Q  = (A'VSA"*1 ; (42) 

and, since we require that the {y.} be statistically independent, the trans- 

formed precision matrix    R    must be diagonal with probability one\     In other 

2 
words, to factor the last p  components of {f.(x)i, we must impose con- 

i \h 
straints on the associated parameters.  This also factors the term [MJ  • 

This then permits one to introduce a random mean,  X. , and a random 

precision,  w. , for each y. , and to set  (y. | X.,ir ) ~ N-(X ,-n  ) , so 

that the equivalent of (21) is: 

p<i I *»£? - \l\h e*p |- i (y - P'&Cj - &\ , c*3) 

with X' • [A,, . .., A ] ; TT' » [TT_ ,TT0 , ..., TT ] ; and 0 • diag (TT) . 
~     1       p~li       p        ~     ° «», 

Through inverse transformations, (43) then reverts to (31), although 

we must be careful in the sequel with terms involving u , since it is no 

longer of rank y p(p + 1) .  If preferred, one can think of a full-rank £ 

being constrained by 4 p(p - 1)  equations taken from (42): 
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I I awaiAi • °      ^-P-
1
 . i * J) 

k 1 
ki lj~kl 

(44) 

This loss of rank will be somewhat compensated for by the introduction of 

more hyperparameters. 

The independent natural-conjugate prior for the random parameters 

(A.,it.)  turns out to be a one-dimensional version of (33): 

p(Ai,TTi) « ni 

^(n.0+2) (12 
exp - TT  X.(n.nir.) + A,TT,y,„ - -x  r.n*. 

)"i' ' "i"i'i0  2 'i0"i| 

2 

A.  exp 1-2 (Ai" Viol '"lO*!5 (45) 

^(n.0+l) 
6XP I" 2 vi0n±| 

which can be called a Normal-Gamma, since (A. | n ) ~ W (n.Qy-Q^io^i) 
an<i 

(Jt) - S(| (ni0 + 3) v\ vi0) , where v±() = t 
1 2 n^y^ •  T^ marginal 10   iO'iO 

density of A.  is a one-dimensional Student-t, similar to (37): 

P(V « 1 + niovio(Ai " Wio) 

-Mn1Q+4] 

(46) 

For completeness, we record the first and second moments of  (A  | IT ) 

t'{Ä. | ^} - n"Jy10  ; V{\±   | f4) - (n10n1)- (47) 

and of  TT  and  TT,  ; 
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f{V = (nio + 3)viJ     ;   El'i1| = (niO + 1)_lvio ; 

(48) 

Wl )   = 2(n.0 • 3)vT0
2     ;     v\7*\   =  2^ + l)"2^ -   1)"^   . 

so  that,   unconditioning: 

EU±}  = nTjy.0    ;     V{1±} = n^Cn^ + 1)"^  ; (49) 

and 

E{V = Vio   ;   V{h} = Wio • (50) 

These are analogous to the Ando-Kaufman results (39), and show that, to 

obtain meaningful densities, we must pick y.. > 0 , v.- > 0 , and n.n > 0 

(n.Q > 1 if we want VV{y.   j TT .}  to exist).  Further, since v.0 = 

-12 2 
r._ - n._y._ , this imposes a restriction of r.-n.« > y._  in the joint 

prior (45).  In fact, since there are only three hyperparameters (n.n,y.-.,r._) , 

we see that there is already some "thinness" in specifying prior moments 

in one dimension. 

Updating with independent data V    » {y  ; t • 1,2, ..., n}  is simply: 
y   ^*t 

ni0 * ni0 + n ; 

n 
yio * y

i0 
+ Jx 

yit ; (51) 

n      2 
ri0 * ri0 + tlx  

(yit} 

Our next step is to express the joint density of all (X ,it )  in matrix 

notation by using the previous definitions for £- , jjn , and J« from 

Section 4, and setting 
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-So = [rio'rio'rPo]    ;   £o = diag Üo> • (52) 

We  then  obtain: 

P ^(n
i0

+2) 11 II 
P^.JL) -   E   <*i> *«P  -lAQSBo^ + VJSEo-liiol "     (53) 

i=l 

We can write the last term as Tr'r_ = tr (IIR )  if we remember that, with 0 — ~0     ~~p ~ 

diagonal, the trace "annihilates" any off-diagonal elements, so that 

tr (IIR ) = .w'jTfl for am/ R  with diagonal equal to jr„ !  This point was 

responsible for several errors in the author's original paper.  We now make 

the transformations A = A p , n = A'QA , and define: 

Nn  = A_1NA = A'N'CA')"1     ;     R~  = A^QAA'
1
)'   ; 

(54) 

N  = AN„A_1     ;     Qn  = AR-A1   ; ~     ~~o~        '    »20     ~~0~ 

and  thus  obtain the new,   enriched LDMEF multinormal prior: 

P li(ni0+2) (1 1        -1 I 
P<£,*8>   '    n     KA'fiA^   ] exp    - I y' (£N)p + y '^ - f 1 'A   ^Alj    (55) 

i=l 

where 1 is the p * 1 vector with all l's  (n • 1 • n ; R_ • 1 • r.,) . 

Q« is symmetric by construction, but IJ need not be. 

By comparison with the thin prior (33), we see that  (noo£^  in c^e ex~ 

ponent is replaced by  (ftN) , a generalization similar to the constant 

covariance case (30).  On the other hand, it does not seem possible to 

simplify the leading product terms in (55) in terms of N , unless, of 

course, all the time constants are the same, and N„ • nnnl  » N transforms ~0 00~     ~ 
,2,    Mn00+2) 

the leading product  into     |A|   |_ßj 
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The messy last term in the exponent can be rewritten tr [A fiQnAll_' ] , 

or simply tr (ßQn) if we remember the previous caution about the trace, 

and realize we would get the same answer now for  tr [fiQ,] , where Q, = AR.A' ° l~Äl -il  ~~]~ 

if R1 were any  square matrix with diagonal equal to r*   • 

In fact, because the same matrix A has been used to transform the 

original 3p hyperparameters in  (y0,N_,R ) , it follows that there are 

2  12       3  2 
strong relations among the p + p + -j  (p + p) = — (p + p)  transformed 

hyperparameters  QbvÜ'Qf)) ' an<* t*ie linearly~dependent random parameters 

(u,fi) , such as: 

ü2o " S& i (56) 

(not expected as N assyrnmetric), and: 

ßg-N'fl  ;  flQn = (AA')
_1(Q-fl)(AA*)  j  (w.p.l) (57) 

1        2 
which are alternate versions cf the — (p - p)  constraints (44).  In short, 

we must not  assume that the Q , N , and Q. of (55) have all the same 

properties as Q  , nrtr.I , and Qn of (33) or N of (12). We will return 

to this point later. 
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LDMEF MULTINORMAL PRIOR MARGINAL AND MOMENTS 

As tempting as it is to factor (55) directly, as in Section 5, we are 

on safer ground if we factor (53) directly, and then transform; by checking 

also the transformation of moments, this will enable us to deduce the correct 

form for the new degenerate covariance term. 

For the conditional mean, it is easily seen that  (A | jff) ~ H  (_NQ >'oüIHn/ ' 

which transforms into  (£ | jQ) *•» W (jK ^XQ^NJ .  This is the natural general- 

ization of (34), and is the same as in the fixed covariance case (30).  The 

moments corresponding to (47) are easily found to be: 

«£ I £} " &'%     ''    £{£ I £} " <8Sf * . (58) 

It is the first term that gives a full-dimensional credibility forecast; 

note also that the constraint (57) on Q    guarantees also symmetry of the 

covariance term. 

The difficulty comes from the marginal precisions, which have joint 

density: 

P     ^io*1)    I  i    I 
pOr) « Jj (»±)        exp \-iz%\   , (59) 

-1 2 
where ,v0 was previously defined to have components r.- - n.Qy.„ . We 

know that we want to express at least the exponent in terms of the matrix I 

before transformation; £*.    has a diagonal version, but it is not clear how 

2 
to diagonalize y . , as we want the updating of _x0 to remain simple.  Two 

possibilities are to define a matrix version of v~ as: 

ll ' *> " Ä0Z0 cv     h m h ~ 2CÄ1 •       (60> 
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(Vn was used in the author's 1974 paper).  Both of these are easily trans- 
~1 

formed, and both give the correct result under annihilation by the trace 

operator,  tr QT^) = tr (IIV^ = r'v0 . 

However, when we examine the matrix generalization of the moments (48), 

it becomes obvious that only a diagonal  version of v_  is acceptable; the 

only way to achieve this is to define a new  matrix version of y~ : 

y10      o 

Y0=diag (y0) =(    y20      ) , y0=YQ • 1 ; (61) 

0      yp0, 

and to take as definition of X. any of the equivalent forms: 

v0 = R0 - NQ Vö = -So - -XoS^o = ^ " ^oÄ1 •       (62) 

then replacing %,'gn    by tr (njV_) . 

After transformation, we have: 

P ^(ni0
+1)    (  1       I 

p(n) a n  [(A'flA).]       exp - i tr (gUn)  , 
1=1 v 

(63) 

which might be called a linearly-dependent Wishart density.  The transformed 

precision-parameter U~     is given by: 

Mo " & " *"\So " So " *Ä^o " -So " ^(Ä l>' • CWJ 

(the _N  in the middle form is not  a typographical error), where we define 

a new matrix of hyperparameters: 
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-1 X. - AY. = A diag (A xj  ;  X • 1 « xn ; (65) 

which, although neither diagonal nor symmetric, has sums over columns equal 

to xn ~0 

Now, we can safely rewrite the means in (48), and obtain, finally: 

£{£} = (N- + 31)1^     ; BlQ'1}  » E = (N + l)~\   . (66) 

Explicit forms for the covariances of the covariance can be found from (48), 

but give formulae involving A . 

It is also difficult to use (46) to produce a simple formula for p(u) , 

similar to (37), which might bt termed a linearly-dependent Student-t; 

generalizations of this and more complicated type often arise in multivariate 

analysis.  Similar remarks apply to the exact form for our outcome density, 

p(x) . 

However, moments corresponding to (49) (50) follow directly by trans- 

formation: 

E{y} - N_1x-  ; Viv)  = D = N-1(N + l)_1Un ; (67) 

and 

£{x} - N_1x.  ;  l/{x} - N~V . (68) 

These are exactly equivalent to the Ando-Kaufman results, with the exception 

that ^ is there replaced by n00I, » and V-    given by (36), instead of (64). 

The variance-covariance matrices are symmetric, since (cf. (56)), NU.. * ^0JJ,' , 

and similarly for other powers of N or N 
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8.  LDMEF CREDIBILITY FORECASTS 

We are now ready to analyze the updating to the LDMEF prior, and then to 

obtain the forecasts from (68).  Starting from V    • {y  ; t • 1,2, ..., n} , 
y   ~t 

we see that we again get quadratic difficulties (similar to the definition of 

r  2 
VQ), since r Q * r.Q + £ y      .     This leads us to define expanded versions 

of y  and x. , corresponding to (61) (65): 

It • dia8 fe)  5 It " Iti I 
(69) 

Xt = AYt = A diag (A
_1xt)  ; ^ = ^ • 1   (t « 1,2, .... n) . 

It follows easily that, posterior-to-data V     , the LDMEF priors (55) (59) 

and the various moments merely require the updating: 

N * N + nl  : x. * x. + T x  ; X- •«- X. + I    X ; 
—  ~   ~   ~»o  ~0   " ~t    ~0  ~0   L   ~t 

(70) 

which shall be compared with (38) and (29). While we have succeeded in 

introducing the enriched time constants, we see that we require a new, 

expanded form for updating Q_ , and hence JL-, . 

The credible mean is unaffected by this.  Setting m • £ x^ to 

coincide with (8), we find that the first formula in (68) gives the pre- 

dictor: 

E{x | V  } - (I - Z)m + Zx , (71) 

as expected. 

. 
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But to update the covariance matrix, we find that we also need ex- 

panded versions of m and x , as follows: 

M • N X_ = A diag (A~ m)  ; Ml - m ; 

(72) 

1 n 1 
X = - 1 X = A diag (Ax)  ; XI • x 

After some algebra, and liberal use of symmetry, we obtain: 

V{X  I P }  - (I - Z)C + ZT(P ) + Z(I - Z)(X - M)(X - M)' ,     (73) 

with 

I(PX) "i l    «t - X)(Xt - X)' , (74) 
t-1 

which should be compared to the result (40) with the Ando-Kaufman prior. We 

see that, as a price for working with a full credibility matrix Z   , we must 

use the expanded forms for the inter-risk and intra-risk statistics.  (73) 

was given incorrectly in Jewell (1974b) because of the dimensionality problems 

discussed earlier. 

This explains why T(P )  is the correct sufficient statistic, as 

n •* °° , for the dispersion or precision of x , instead of the more usual 

sufficient statistic, S(P ) - n" Y (x„ - x)(x„ - x)' . The latter is 

sufficient for P only if 5 is of full rank, while in our case, it was 

constructed from a lower-dimensional vector,  it . 

We give two additional formulae not in the original paper: 
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EH*  I 5 I P > - E «_1 I P  = (I " Z+)E + Z+T(P ) 

.+ 
+ Z (I - Z)(X - M)(X - M)' ; 

(75) 

l/E{x | Ü I V  } = U{p 1 V }  = (I - Z)D 

" ^ZZ,+ [-E + T(Px) (76) 

where Z      is a credibility matrix with larger time constants: 

Z+ = n(N + I + nl)"1 . (77) 

(75) is the persistent part of (73), while the uncertainty about u vanishes 

almost surely (in the non-degenerate case) as n •*• °° . 
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9.  RANDOM PRECISION ONLY 

Our new results can be most easily seen in isolation, by considering 

the case where only Q    is random, and we set m = 0 for convenience.  The 

problem of predicting 0.        is of continuing interest in the Bayesian liter- 

ature, see, e.g., Dickey, Lindley, and Press (1981). 

For the thin natural-conjugate prior, we obtain easily: 

hnr '00    I  1       ) 
p(£) * |Q|   u exp - 2 tr (flU0)j (78) 

that is, £~W (n  + p + 1 ; jJ„) with -r (p + p + 2) hyperparameters 

(non,JL.)  to be estimated (Un must be symmetric, not for the trace, but for 

the moments below).  This may be compared with (35).  Updating is as in the 

first and third formulae of (38), so that the thin forecast of the covariance 

of the observations, corresponding to (40), is simply: 

l/{x IP)- EifT1 I V  I - (1 - zn.)C + znn ~ ~ '  x    |~  '  x        00 ~   00 
i  n 

n L„ ~t~t 
t-1 

(79) 

where C  • nnoün *  This result is well-known, although not usually ex- 

pressed in shrinkage form (see, e.g., Press (1981)).  (Remember C - .E , 

and D , m vanish). 

For the enriched prior, we follow the appropriate steps of Section 6 

and find that: 

P ^10    (  1       ) 
p(ß) « n  [(A'OA.)i]  

1U exp ,-f tr (gt^)] (80) 

for some ti    constrained by (44) or (56) or (57), that is, of rank p , and 

with U_ - Qn - AR.A* , where Rn is diagonal, so that (56) applies. We 
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thus have the 2p initial hyperparameters {nn;_r,.}  for T^ , plus the 

effective terms in the transformation matrix A  (see below). 

After arguments similar to those of Section 7, we find the enriched 

covariance forecast to be: 

l/{x V  } = (I - Z)C + Z - x   ~  ~ ~  ~ n I X X' 
t=l -^ 

(81) 

which should be compared with (73). £ is now N U^, , and again the en- 

riched prior makes the credibility factor matrix full-dimensional, but 

changes the sufficient statistics to their expanded versions, using XX' 

instead of x x' . 
~t~t 

-1  v One can determine second moments of £ or tl  • J  through trans- 

formations of the formulae in the Appendix. 
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10.  PROPERTIES OF THE TRANSFORMATION MATRIX 

Having produced an enriched prior and the associated prediction 

formulae, we now turn to the problem of specifying the needed hyperparameters. 

But first, we must consider how to find the appropriate transformation 

matrix A . 

In some situations, there may be a natural choice for A .  For ex- 

ample, in their 1981 paper, Dickey, Lindley, and Press assume that (in our 

2 
notation) £ in (79) is of interclass form,  C = o [(1 - p)I_ + pll'] , and 

note that there exists an orthogonal matrix T    which diagonalizes £ and 

ü0 via Jjcr.' = diag (a, 6, . .., 6) , a = a2 + (p - 1)6 , g = o2(l - p) . 

From (54), we see that this essentially defines A = £  = £'  as a par- 

ticular orthogonal matrix, and this shows how to calculate the expanded 

observations X  in (81), and the possible forms for N , which here becomes 

symmetric.  In fact, for this interclass £ , there are many possible A , 

as the first column of A is p 1 , and the other columns are any set of 

(p - 1) mutually orthogonal, normed vectors, also orthogonal to 1^ ; this 

1 
gives "z  (p - 1)(p - 2)  free choices. 

In the more general situation, we may wish to test a given _N , to see 

if it is of permitted form.  Letting {a.} be the column vectors of A , 

we see that (54) can be rewritten: 

«Sfcj • n-joitj • (82) 

which means that: 

(1)  the hyperparameters (n .) of the independent priors (45) 

are the eigenvalues    {v.} of N_ , referred to in Section 

2; these must be positive (or, greater than unity) if we 

want the moments (48) to be well-defined; 
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(83) 

(2) the columns of A are the (right) eigenvectors  of N , 

which must be mutually independent, since we have 

assumed A    is of rank p ; however, they need not be 

mutually orthogonal, since N is not necessarily 

symmetric; 

(3) from the fact that (54) (82) are similarity transforms, 

it follows that: 

LBol = n n  > 0   (or,  > 1) ; 
i=l 

P       P 
tr (N) = tr (N ) = £ n  = £ n  > 0   (or,  > p) 

i=l      i-1 

This interpretation shows also that we can norm  the column vectors of the 

transformation, by using a matrix A* , with columns £* • k.a^ , (which is 

equivalent to a scale change  of k.  in the underlying y. , used with the 

original A).  The matrix of time constants, £ , and the process for forming 

_X | X , and M are unaffected by this change, while the hyperparameters 

(XQ,QQ)  merely reflect the underlying scale changes.  Since our prediction 

formulae are in terms of the final moments in X , (£,£,£,£) , this scale 

change does not affect (71) (73) or (81), either.  In other words, the 

2 
use of an arbitrary, invertible A can only introduce p - p effective 

new hyperparameters into the enriched credibility formulae; the regaining 

p column norms merely make "nuisance" scale changes. 

An important special case occurs if A is an orthogonal  matrix, so that 

A  « A' , and all the transformations from N , 0 , and Qn    to and from 

their diagonal counterparts become the same orthogonal transformation;  this 

makes N    symmetric, and from (56) (57), N , ti   , and Q» all commute with 
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each other.  The converse is usually only partially true, since all "normal" 

real matrices  (N,'N = NN')  also have orthogonal reductions.  But, in our 

case, we require the {n .}  to be real, and this means N_ must be symmetric 

(see Bellman (1960) or Nobel (1969)).  Therefore,  (A_1 = A')  iff  (N = N') 

for our problem. 

The question of whether or not N is symmetric is tied up with the 

reductions of JE and D , which, being symmetric, always have orthogonal 

diagonalizations.  If the orthogonal transformation matrix is the same  for 

both E    and D , then they are said to be simultaneously  orthogonally 

diagonalized (Bellman (I960)) which can only occur if they commute (ED^ =_DE) , 

i.e. , if 1 • •' . 
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11.  SPECIFICATION OF HYPERPARAMETERS 

Eventually, every Bayesian analysis must address the problem of specifi- 

cation of the prior hyperparameters.  Several authors have mentioned the 

difficulties of forming a prior opinion about the Wishart prior (35), es- 

pecially because of its thinness.  (63) is a little easier to visualize, as 

it is formed by a linear transformation from independent Gamma densities (45), 

yet here we have the problem of reduced rank, and the required inter-relations 

(56) (57) between 8 and the hyperparameters. 

The point of view we wish to emphasize in this section is that, if the 

objective of the Bayesian analysis is to forecast the mean and variance of 

x , we can focus our attention on the estimation of parameters which are 

pretty much in the space X , and which have natural classical estimators 

when large amounts of collateral data are available.  (However, we will not 

discuss the problem of actually making these estimates:  see, inter alia, 

De Vylder (1978) (1981), Norberg (1980) (1982), Zehnwirth (1981) and Sundt 

(1981)).  Counting the number of hyperparameters to be specified also in- 

dicates the additional modelling flexibility of an enriched prior. 

As a warm-up, let us first examine the basic credibility model of 

Section 2, where p is random, but V{x I u} • W  • E is given.  In the 

simple natural conjugate prior (19), we see that there are p + 1 hyper- 

parameters  (nQ0;m)  to be specified; but m = E{ac} , and n00 is got from 

nOoi * ~ ~  ' wnere £ * ü^ must be similar to .E , so these parameters 

2 
are easily visualized.  The enriched version (30) has p + p  hyperparameters 

(m,N) , but these are also easily visualized, as again m - E{x} , but N is 

got from N » D jW  , with D • f{p} now an arbitrary, symmetric positive 

definite matrix to be estimated.  In other words, apart from m and C » ,^(x) 
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the only additional prior specification problem involves the split of vari- 

ance into its inter-risk and intra-risk components, one of which is given. 

2 
The modelling gain in using the enriched version is p - 1 additional 

parameters. 

1  2 
Passing now to the case when both v   , £ are the -r (p + 3p)  random 

1  2 
parameters, we recall that the Ando-Kaufman prior (33) requires •=• (p + 3p + 2) 

hyperparameters ^nnri'^n'-2o^ '  T^e mean an<* t*le variance of (37) give 

2 (p + 3p)  of these:  E{u} - m - n"^ , and V<£) = D = n~J(n0() + D~\   , 

leaving only one  degree of freedom, since E]£{x | £} » E " n.^D !  Alternately, 

12 
we could ignore D , fix -r (p + p) coefficients from the mean of £ or 

£  = i    and then estimate one  second moment of ß or I from the formulae 

in the Appendix; all other second moments are then determined!  In short, 

there is one more hyperparameter than the number of parameters, no matter 

the size of p . 

Our enriched prior (55) can be evaluated at several different stages. 

In terms of y and (^.^,) » we see from (45) that, for 2p random param- 

eters, we have first 3p hyperparameters  (n-.y-.r») , augmented by the 

2 
effective number of elements in A (p - p , by a previous argument), for 

2 
a total of p + 2p hyperparameters.  In terms of (55), we count fiTst 

2  1 
the p + p + "2 p(p + 1)  hyperparameters ^N.XQJQ..} • whicn must then be 

12 2 
reduced by the -j  (p - p)  constraints (56), for a total of p + 2p 

effective hyperparameters.  Finally, in the specification the author prefers, 

we think of the problem of specifying prior estimates of m , .E , and D . 

We then compute JS - EJ^  , xQ = Hm  , and ü0 " (N + I,)E • The eigenvalues 

of $    are then computed, and if these are negative (or less than unity), 

then the assumptions about E , JD must be inconsistent with the LDKEF model. 

Usually, however, there will be no difficulty at this point, and A is 
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determined as the matrix of eigenvectors of N , (which will be orthogonal 

if  N  is symmetric).  The determinations of  X  (t = 0,1, ..., n) , 

X , and M are immediate from (69) (72), whence one can find Q.  from (64), 

and the credibility forecasts from (71) (73).  (m , E , and D) give also 

12       12        2 2 
P + 2 (p + p) + "J (p + p) = p + 2p degrees of freedom,  p  more than the 

number of random parameters.  By comparison with the Ando-Kaufman prior, we 

1  2 
see that iz  (p + p - 2)  more hyperparameters have been introduced. 

Finally, if only the precision ß  (or covariance \\  is random, (78) 

1  2 
shows that, for the -z  (p + p)  random parameters, the Wishart prior 

1  2 
requires specification of •_- (p + p + 2)  hyperparameters  (""-nn'^O^ ' i,e#> 

C_ and one  additional component of say, the variance of \   .     The enriched 

prior, on the other hand, only contains p independent random variables, 

2 
but utilizes  p + p hyperparameters, computed in the various ways in- 

dicated above.  Since m = J) = 0 , this suggests that the analyst could es- 

-1 12 
timate C = E = N U„ , but must obtain the remaining -z  (p + p)  parameters ^/  ~~  ~~ ***0 2. 

from the third moments of x , the second moments of \   , or else some 

physical interpretation of N or A . 
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Example: 

To illustrate the issues raised in the previous sections, we consider 

a two-dimensional example where m , and the two components of the covariance 

have been estimated: 

D = 

1 1 -i 

3 3 

i    I" 
ell e12 

1 i el? e22 
J b 

lle22 " e12/ muStbe For E    to be positive definite,  e.... , e,« » and  le 

positive.  Then, we find easily that £ is diagonalized by T-   , with 

eigenvalues 6 , where: 

XÄ " diag ®   >  £v = ji 
2   +1 

-1   2 
; i 6'1 

and _E is diagonalized by £     , with eigenvalues £ , where: 

I'ETe - diag (z)     ; XE 

kle12 

k1(e1 - en) 

k2(£2 " e22> 

k2e12 

el,2*2 (ell + e22) ±Ve12+Ä (ei1 "*•»*  ; k-< -11 c22' e12+(£i-eii)2 
-h 

(i-1,2) 

This makes the matrix of time constants, N , and the credibility matrix, Z , 

5e  - 2e    2e   2e 
11   12   e12  ell 

5e12-2e22  2e22 - 2e12 

7. x 

'   ~    A(n) 

n(n+2e22-2e12)  -2n(e12~e11) 

-n(5e  - 2e22)  n(n + 5en - 2e12> 

A(n) - n + n[5eu + 2e22 - Ae12] + 6 elle22 " el2 
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The eigenvalues of N , v • [v^.v-]' . are the two roots of A(-v) = 0 ; in 

order that they both be real and positive: 

5en + 2e22 4e12 > 0 ellel2 * e12 

In this case, the second condition dominates, and is automatically satisfied 

if _E > 0 . From the eigenvectors, we can form 

A = 

2e12 - 2ell 

vl + 2e12 " 5ell 

(v2 + 2e12 - 2e22) 

5eu - 2e22 

or any similar A with normed columns, so that A "NA • diag (v) = N_ . 

If we use the Ando-Kaufman prior (33), we can set m and D as above, 

but we require that E *  nno£, t which means that: 

ell * e12  '  e22 = 2 el2 ;  n00 = 3e12 ; 

and that e 2 > 0 or 1. From these we get the 6 hyperparameters  (nno'-2o'%^ 

for the prior; the 3 precision-parameters,  (u>..,(U.,,ID«.) , are constrained 

.  .    -2 
by the positive-definiteness requirement <*>iiu22 * u12 ' From tne above we 

1       1' 
see that £ = •» ei2>^ei2  ' anc* XE = XD (arter possibly permuting columns), 

and v. • £±/$i  " 3e.2  (i »1,2) .  If we use the prior (55) with the above 

values of (e.,) , then £ is already diagonalized, and any  invertible £ 

works, so we might as well use A • I . Note also that the (single) con- 

straint (44) or (57) is vacuous, in this case. A typical term in the vari- 

ance forecasts (73) and (81) would use: 

~t~t 

It XltX2t 

XltX2t     X2t J 
~t~t 

It 

0 

0 

2 
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showing the underlying independence in this case, since Z is diagonal. 

All other choices of the  (e..)  require the more general prior (55), 

An important special case occurs when: 

e22 = ell + 2 e12   (ell *  e12) ' 

with «,, > -r e,-  to make E > 0 .  Then E = 
11  2 12 ~ — ell " 2 C12 ' ell + 2e12 

and we again find T    = T     .     This means that N is symmetric, and we find 

the underlying time constants to be: 

v = [6elx - 3e12 ; eu + **UV     ;  (v± = e.±/6±  ; i = 1,2) ; 

both now greater than zero if e-, > -2e,~ •  In fact, A can be normalized 

so that A = r„ = T_ = (A )' !  A typical term in the variance forecast (81) 

would be: 

~t<&t = 25 )Xlt 

5 -6 -4 14 

•4« 
5 7 

-6 8 
+ XltX2t 14 12 7 17 

All other cases give more general results. For example, if 

ell = e12 " Ke12 ' 

then    K >  1    to make    E > 0   , £ -   [(K -  l)e12   ;   (K + l)e,,]'   ,  but 

~E"/2 

1        1 

-1       1 + 1* 
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N    is  unsymmetric: 

£=e12 

5K -  2 2 -   2K 

5 -  2K        2K -  2 

and the characteristics roots must be calculated from: 

"12 
»      s ——— 
1,2   2 

+ \2"* (7K - 4) +\23K - 56K + 40 

which are obviously not related to {£.} and {6.} .  For example, if K = 2 , 

we find 

vx 2 = (5 + fi)e12  = (2.35424,7.64575) * e^  , 

and 

0.33392   0.98467 

0.94260   0.17441 
;   A 

-0.20049 

1.08355 

1.13192 

-0.38385 
* A' 

and A jJA diagonalizes to diag (v-iV«) .  A typical term in the variance 

forecast (81) would be: 

&& ' xu 
1.14286   0.21429 

0.21429   0.071429 
+ XltX2t 

-0.85714 

-0.28571 

-0.28571 

-0.42857 

+ x 
2t 

0.28571   0.42857 

0.42857   1.14286 
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SUMMARY 

To summarize, the linearly-dependent multinormal prior introduced in 

Section 6 has two important advantages over the traditional Normal-Wishart 

prior:  it permits the specification of a much larger number of hyperparam- 

eters, which can conveniently be taken as the prior observational mean, m , 

and the two components of prior observational covariance, D and E ; fur- 

thermore, the prediction formula for the mean observation is of full-dimen- 

sional credibility form.  Against this must be balanced the fact that the 

random precision is of reduced rank, leading to a prediction formula for 

the observational covariance that involves a new type of sufficient statis- 

tic.  It will be interesting to see if this additional modelling flexibility 

leads to improved predictions, or if further developments of this difficult 

theory are possible. 

. 
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APPENDIX 

NOTATIONS, DISTRIBUTIONS, AND MOMENTS 

Boldface lower case letters refer to vectors, usually p-dimensional, 

viz., x = [x-,x , ..., x ]' ; boldface upper case letters refer to p * p 

matrices, whose elements are written in lower case, viz., Q has elements 

[oo..] .  In contrast to Jewell (1974b), greek letters here refers to param- 

eters.  Random variables are indicated by a tilde over the corresponding 

argument; in this way we can use the usual trick of using p(*)  for all 

random variables, and letting the arguments indicate the appropriate (dis- 

crete or continuous) density, so that p(x | y,fi)  is the density of x , 

conditioned on U • u and ß » ß .  E{x}  is the usual vector mean, and 

l/{x} = E{ [x - E{x}][x - E{x}]'} is the variance-covariance (dispersion) 

matrix.  Sequential operators are interpreted inside-out, viz. EV{\i   \   ti) 

means:  first the dispersion of v   , conditional upon Ü  • Q  ; then the 

expectation over all values of Ü   . 

Our definition of distributions is taken mostly from Johnson and Kotz 

(1972) with the exception that we always emphasize the precision (parameter) 

matrix, instead of the dispersion. 

The multivariate-normal  (multinormal)  distribution with mean vector m 

and precision-matrix W has x ^ hi  (m;W)  if 

p(x) - (27r)"p/2|w|Js exp J- \  (x - m)'W(x - m)| ,   (x e Rp) . 

Moments are: 

E{x} - m ;  l/{x} - W'1 
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The muliivariate  Student-t ("with common denominator") distribution with 

a degrees of freedom, mean vector m , and (symmetric) precision-parameter 

matrix W has x — S (a;m;W)  if: 
*v     i**        p ****** 

l{\  (a + p))   , . 

p(is> = ,\v,2 ,.   lül^1 + • <5- a>^£-£)]'^(a+p) ,     c* E
 

RP
> • 

(7ra)F/ r(2J 

Moments are: 

E{i} = m ;  l/{i) » —S—• W"1 

The Wishart  distribution with a degrees of freedom and a (symmetric) 

precision-parameter matrix W is defined only for a random, symmetric  matrix 

n    over values in R       that make it positive definite, 

if the density is: 

Q ~ W (a,W) 

P(fi) = >*\(i») 
-1 

IÄ|JS01£|JS(°-P-1) exp £ tr (nw) (£ > 0) 

s-1 Letting Q      • } * (a. )  (the usual variance-covariance matrix), we have 
"*•' *%* ij 

E{£}  - aW-1     ;     gif]  -   (a - p -  l)"1*  ; 

and  the covariances are:     (see Press   (1981)) 

H'wkl w + w   wJ  )   ; 

C{°ij;°kl}  B   Xa-pXa-p-lXa-p-3)]"1 2(a- p- l)-1wijwkl + wikwjl + wilwkj 

for aZZ     (i.j.k.l)   , where    v^  -  (W*-1),,   . 
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The Gamma  distribution with shape parameter y    and scale parameter 

has u) ~ G(Y,6)  if: 

p(u>) =    j,(y)  ,    (u) > 0) 

Moments are: 

E{ü} = ye-1 ; E{w-1} = (Y - I)-1* 

V{u)  = Yß"2  ; l/{u>-1} = (Y - D"2(Y - 2)ß2 

It follows that U/..(a,w,,) • GJTO.TW,,) is a Chi-squared density 





get froa £ - jf *£'* . with £ - Vijt)   nau •* erbitrsry, eyaaetrle positiv« 

definite aetrlx to b« estlaeted. la other words, »pert froa a end £ - V(i) 



-  .. ^iupuLc n_ • tu^      , JLj " jjm , and jJ. - (JN + OE . The eigenvalues 

of N are then computed, and if these are negative (or less than unity), 

then the assumptions about JE , I) must be inconsistent with the LDMEF model. 

Usually, however, there will be no difficulty at this point, and A is 









for all    (i.J.k.l) , wh«r«   w1J - (jf1)^ • 




